智慧型奈米材料科學

微奈米尺度熱流科學

-

研究成果:
近年來隨著微奈米科技(micro/nanotechnology)的發展,微奈流體學(micro/nanofluidics)的研究漸趨熱絡,特別是應用在生醫樣品注射(biomedical sample injection)、電化電池傳輸(electrochemical cell transport)及電子晶片冷卻(electric chip cooling)等系統的熱流場及其特性分析。本研究室於2005年首先探討微渠道(microchannel)內稀薄氣體(rarefied gas)完全發展浮力驅動流(fully developed buoyancy-driven flow),並於2006年進一步探討發展流(developing flow)之問題。2008年首先探討完全發展熱潛驅動流(thermocreep-driven flow),並於該年證明以Navier-Stokes統御方程式搭配Maxwell–Burnett滑動邊界條件的連體模式,其適用的Knudsen數可高達1.6,在標準大氣條件下,所對應的尺寸可小至41 nm。以此模式為基礎,於20102011、2013、2014及2015年延伸探討二階(second-order)邊界條件對強迫對流(forced convection)及混合對流(mixed convection)在不同熱邊界條件下之影響。除此之外,於2012及2013年首先探討微渠道內電磁驅動力(electromagnetic driving force)及焦耳加熱(joule heating)對發展及完全發展強迫對流之影響。於2015年開始探討奈米流體(nanofluid)於微米尺度流動及熱傳(microscale flow and heat transfer)之問題。

電力及能源科學



 

圖示說明
 

˙微流體學•奈流體學
   – 奈米管

Material and systematic structures assembled from atoms or molecules with a size in the range of 1 to 100 nanometers are called nanostructures. A nanotube is a nanometer-scale tube-like structure.

˙微流體學•奈流體學
   – 磁氣體動力學流動及熱傳

To understand the causes of the two mechanisms and their roles on ionized gas microflow and heat transfer, a mathematical model was developed of the pressure-driven gas flow through a long isothermally heated horizontal planar microchannel under an applied electric and magnetic field. The fully developed solutions of the flow and thermal field distributions as well as the corresponding characteristics were then derived analytically and presented in terms of dimensionless parameters.